Proof Without Words: Arithmetic Mean / Geometric Mean Inequality

Wasim Akram Mandal, Beldanga D.H.Sr. Madrasah
In this proof without words, we prove almost wordlessly the following inequality, if $c_{1}, c_{2} \geq 0$, then $\frac{c_{1}+c_{2}}{2} \geq \sqrt{c_{1} c_{2}}$ (AM-GM inequality).

$$
\begin{align*}
m_{1} & >m_{2} \tag{1}\\
\Rightarrow \frac{c_{1}-\sqrt{c_{1} c_{2}}}{c_{1}-c_{2}} & >\frac{\sqrt{c_{1} c_{2}}-c_{2}}{c_{1}-c_{2}} \tag{2}\\
\Rightarrow c_{1}-\sqrt{c_{1} c_{2}} & >\sqrt{c_{1} c_{2}}-c_{2} \tag{3}\\
\Rightarrow c_{1}+c_{2} & >2 \sqrt{c_{1} c_{2}} \tag{4}\\
\Rightarrow \frac{c_{1}+c_{2}}{2} & >\sqrt{c_{1} c_{2}} \tag{5}
\end{align*}
$$

Case 2: $c_{2}=c_{1}$
Note that $c_{2}=c_{1} \Longrightarrow \frac{c_{1}+c_{2}}{2}=\sqrt{c_{1} c_{2}}$.
Considering Case 1 and Case 2 together, we conclude that $\frac{c_{1}+c_{2}}{2} \geq \sqrt{c_{1} c_{2}}$.

References

Love, B. J. (1977). Proof without words: Cubes and squares. Mathematics Magazine, 50(2), 74.
Nelsen R. (1993). Proofs without Words: Exercise in Visual Thinking. Washington, D.C.: Mathematical Association of America.

Nelsen, R. (2000). Proofs without Words II: More Exercise in Visual Thinking. Washington, D.C.: Mathematical Association of America.

