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1 Introduction

Many middle school students say subtraction of negative numbers is easy; you just need to KISS.
For the first number, you keep it (KI) the same, then you switch (S) the subtraction to addition, and
lastly switch (S) the second number to its opposite. For example, 8− (−2) becomes 8 + 2. Similarly,
when dividing fractions, keep the first number the same, switch the operation to multiplication, and
switch the second number to its reciprocal. So, 1

2 ÷ 1
4 becomes 1

2 × 4
1 . Unfortunately, problems arise

when students overgeneralize and apply this procedure to other calculations. For example, students
may apply this mnemonic to multiplication and falsely conclude that 8× (−2) is equivalent to 8÷ 2.
Instances of this type of overgeneralization were observed when we interviewed 20 seventh grade
students about their understandings of integers and computations involving integers (Graybeal,
Strickland, Rodriguez, & Guerra, 2013).

In this article, we share research on the use of mnemonic devices in mathematics instruction.
What are mnemonic devices? What are their benefits? What should teachers be cautious about?
How should mnemonic devices be used?

2 What are mnemonic devices?

The word mnemonic is derived from the Ancient Greek word for memory. Mnemonic devices are
“structured ways to help people remember and recall information” (Brigham & Brigham, 2001,
p. 1) that take many forms and have many purposes. The most common form in mathematics
instruction is the first letter mnemonic or acronym. In this form, the first letter of each word that is
to be remembered is used to generate a new word or phrase. KISS is such an example. Acrostics are
sentences formed by words which share the same first letters as the words to be remembered. For
example, Please Excuse My Dear Aunt Sally is an acrostic for the Order of Operations: Parentheses,
Exponents, Multiplication/Division, and Addition/Subtraction. Songs and jingles can serve as
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music mnemonics. For example, many students learn the quadratic formula through song. Lastly,
ode mnemonics are short poems that communicate ideas such as “Ours is not to reason why; just
invert and multiply.”

The purposes of mnemonic devices also vary. They can be used to recall mathematical conventions,
definitions, facts, computational procedures, and general problem solving heuristics. Examples of
some common mathematical mnemonics organized by form and purpose are listed in Table 1.

Table 1: Common Mathematical Mnemonics Organized by Form and Purpose

Computational Proce-
dures (useful after the
development of concep-
tual understanding)

Conventions, Defini-
tions, and Facts

Problem Solving
Heuristics

First Letter
Mnemonics
or Acronyms

FOIL for binomial mul-
tiplication KISS for
integer subtraction

SOH, CAH, TOA for
trigonometric ratios;
PEMDAS for Order of
Operations

STAR for Search,
Translate, Answer,
Review

Acrostics Does McDonalds Serve
Cheese Burgers? for long
division

Please Excuse My Dear
Aunt Sally for Order of
Operations; King Hector
Doesn’t Usually Drink
Cold Milk for prefixes of
metric units

Music
and Ode
Mnemonics

Ours is not to reason why;
just invert and multiply
for fraction division

Song for Quadratic
Formula

3 Benefits of Mnemonic Devices

The use of mnemonic devices is supported by research in special education and is “validated for
students with high-incidence disabilities, particularly students with learning disabilities, as well as
for students at all levels of education” (Brigham & Brigham, 2001, p. 1). Our research also supports
the efficacy of mnemonics in special circumstances. We individually interviewed 20 seventh grade
students in three different middle schools about their knowledge of integer operations. An outline
of the interview protocol is included in Table 2. The results were fairly consistent among the 20
students. Most were able to answer the purely computational questions correctly and explain how
they arrived at their answers using a rule (such as KISS).
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Table 2: Interview Protocol

Protocol
• What do you know about integers?
• What is a real life example of integers?
• If I give you a set of numbers, can you place them on a number line for me?

-5, 1, 7, -2, 4, 0
• Which is the smallest number? Which is the biggest number?
• Now we are going to ask you to solve some arithmetic problems.

Sample arithmetic problems Sample Prompts to Facilitate Explanations
8 + 2 8× 2 How do you know this?

−8 + 2 −8× 2 Draw a picture.
−8 + (−2) −8× (−2) What is a situation that represents this?
8− 2 8÷ 2 How do you think about problems like these?

−8− 2 −8÷ 2 Prove that this is correct.
−8− (−2) −8÷−2 Explain how you got this answer.

Use a number line to explain this.

Table 3 shows the results of our interviews focusing on the computations involving negative
numbers. Overall, the percentage of correct answers was 81.3%, and the percentage of correct
explanations was 73.6%, but the percentage of explanations which demonstrated conceptual under-
standing was only 23.6%. For example, an explanation that −8× 2 equals −16 because, “A negative
times a positive is a negative” was counted as a correct computational answer and a correct expla-
nation; we did not, however, see this explanation as demonstrative of conceptual understanding.
An explanation demonstrating conceptual understanding might include an observation that “this is
two groups of -8.” One student who used such an approach accompanied her written work with a
drawing of two groups of eight circles, noting that each circle represented negative one. Such work
provided evidence that students’ use of mnemonics such as KISS helped them compute accurate
answers.

4 Cautions about Mnemonic Devices

Although the 7th graders we interviewed were able to find accurate answers to computation, most
of them relied on mnemonic devices to determine these answers. The majority knew their answers
were correct only because the rule said it worked. For example one student said, “I can’t explain
KISS. It’s just how we were taught.”

Without a solid conceptual understanding, the students in our study used a variety of rules to
compute with integers. The majority used KISS for subtracting integers with many overgeneralizing
this rule. For example, when computing 8 × (−2), one student stated that “you would have to
divide by two; you have to do the opposite of what you were given.” This student kept 8, switched
the operation to division, and switched the (−2) to 2 and found the answer to 8÷ 2. We found that
students who were taught mnemonics for integer computations often misused these rules, mixed
together rules, and confused themselves to the point where they didn’t know when to use particular
rules.

Undoubtedly, mnemonic devices can help students memorize conventions, definitions, facts, and
computational procedures. For example, mathematical definitions such as the names and meanings
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Table 3: Students’ Answers and Explanations

Addition Subtraction Multiplication Division Overall
−8 + 2 8− (−2) −8× 2 8÷ (−2)

−8 + (−2) −8− (−2) (−8)× (−2) (−8)÷ (−2)

Questions
posed

n = 40 n = 40 n = 37 n = 27 n = 144

Correct
computational
answers

n = 35
(87.5%)

n = 27
(67.5%)

n = 32
(86.5%)

n = 23
(85.2%)

n = 117
(81.3%)

Correct
explanations

n = 34
(85%)

n = 24
(60%)

n = 29
(78.4%)

n = 19
(70.4%)

n = 106
(73.6%)

Explanations
that were
correct and
demonstrated
conceptual
understanding

n = 24
(60%)

n = 3
(7.5%)

n = 6
(16.2%)

n = 1
(3.7%)

n = 34
(23.6%)

of the trigonometric ratios must be taught to students so that they can communicate precisely
with others. The mnemonic SOH CAH TOA seems to be useful for this purpose. But, when it
comes to procedures, as teachers we must ask ourselves why we are asking students to memo-
rize specific steps which may not generalize to more complex problems. In particular, caution
should be heeded when considering the use of mnemonics for computational procedures. For
example, the acronym FOIL can be useful in helping students remember to correctly multiply
two binomials such as (x + 2)(2x − 3). By multiplying the first terms, outer terms, inner terms,
and last terms, all terms have been properly distributed. But, what happens when a student is
asked to multiply two expressions that don’t fit this mold? For example, what would a student
who relies on FOIL do when presented with a computation such as (x2 + 3x − 4)(2x − 3)? Stu-
dents who rely on FOIL would not have an approach that is flexible enough to work in this situation.

The teaching of procedural mnemonics also sends a very narrow message about mathematics.
It tells students that their job is to memorize and follow procedures without stopping to think about
why they are doing what they are doing.

5 Recommendations

When considering the use of a mnemonic device, first ask yourself if the information to be learned is
of factual or procedural nature. Mnemonics that help students remember conventions, definitions,
and facts may be useful, especially for students with disabilities. But, mnemonics for procedures
can be dangerous because students often overgeneralize and misapply them. Instead of teaching
procedural mnemonics, focus on helping students develop generalizable strategies. For example,
instead of FOIL, teach students to think of multiplication of two expressions as finding an area. If
young students are taught to approach 573× 89 by sketching an array, then later finding the product
of (x2 + 3x− 4)(2x− 3) is a natural extension.
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573× 89

500 +70 +3

80 40,000 5,600 2,400
+9 4,500 630 27

So, 573× 89 = 40, 000 + 5, 600 + 240 + 4500 + 630 + 27 = 50, 997

(x2 + 3x− 4)(2x− 3)

x2 +3x −4

2x 2x3 6x2 −8x

−3 −3x2 −9x 12

So, (x2 + 3x− 4)(2x− 3) = 2x3 + 6x2 − 8x− 3x2 − 9x+ 12 = 2x3 + 3x2 − 17x+ 12

The most useful mnemonic devices focus on the process of solving a mathematical problem, not an
isolated mathematical skill or procedure. These mnemonics are generalizable to a wide variety of
situations. The STAR Strategy is a particularly effective mnemonic device. In the STAR strategy,
students:

• Search the word problem,

• Translate the word problem into an equation in picture form,

• Answer the problem, and

• Review the solution.

Strickland and Maccini (2010) found STAR to be effective in supporting the mathematical learning
of students. Students should be taught to work through the steps and to use the STAR Strategy
Checklist to ensure all steps are followed. There are many resources available to help teachers
support students’ understanding of difficult mathematical concepts. For example, much has been
written about effective ways to teach the Order of Operations without PEMDAS (Dupree, 2016),
fraction computation (Cardone, 2015) and integer operations (Gregg & Gregg, 2007). If students
have a strong conceptual understanding of the procedures, mnemonics are not necessary.

Ohio Journal of School Mathematics 78 Page 15



Table 4: STAR Strategy Checklist (Adapted from Strickland & Maccini, 2010)

Check off
each
step as you
work

STAR Strategy Steps

Search the word problem
•Read the problem
•Ask yourself, “What facts do I know?” “What do I need to find out?”
•Write down facts

Translate the words
•Use manipulatives, drawings, or symbols

Answer the problem

Review the question
•Re-read the problem
•Ask, “Does the answer make sense? Why?”
•Check answer

In summary, mnemonics can be an effective instructional practice when teaching students mathemat-
ical problem solving process, conventions, definitions, and facts. Caution should be heeded when
considering mnemonics for procedures. When helping students develop mathematical procedures,
be sure to help students realize that mathematics makes sense!
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