There's more to a portal than walking through it

By M. Fredrick Volkmann
Photographs by Brent Turner

If it doesn't stick, it squeaks. When you try to push it in, it only pulls out, or vice versa. Kick it, and it won't budge.

A door can be the most exasperating thing, rarely loved and more often a source of oaths. Name a poet who has written an ode to a door. Find an artist who paints doors on canvas.

But a door can be a part of a bigger, architecturally inspiring statement. Unfortunately many of us see only the door itself and fail to appreciate the architect's ageless love for the archway or the entrance that surrounds it.

On the entranceways to Ohio State's older buildings, there are delicate filigrees, hand-carved scrollwork, massive arches, or ionic columns patterned after portals from early Greek civilization. For some, these doorways are the building's strongest architectural feature.

Pictured here are doorways to learning; doorways that have witnessed the comings and goings of more than a quarter-million graduates; doorways that have said goodbye to countless weary professors taking home papers to be graded or research reports to be completed. In a sense, entranceways signify opportunity — a chance to explore new educational horizons, an avenue toward gleaming knowledge from some of the finest minds.

But behind these stately old entrances may be barriers to learning, too. Poor ventilation and heating, inadequate lighting, a leaky roof, worn-out electrical and plumbing lines, and especially — outmoded teaching facilities and equipment have an effect on the quality of classroom instruction.

"We tend to think of all buildings in a physical sense, but they also wear out educationally," said William Griffith, OSU's director of campus planning. "They can age to a point where they get in the way of instruction, even if the building appears to be in acceptable condition."

One quarter of Ohio State's educational facilities is more than 40 years old. "Some are approaching the end of their first lifetimes and are in serious need of renovation," Griffith added.

Renovation vs. replacement

Preserving a cherished landmark is only one of several criteria used by campus planners and architects when considering the renovation of a building. They also review the need for continued usage of the space, location, cost benefits of restoration, impact on the campus environment, plus historical and architectural value.

If a building is not structurally sound and if its systems are badly deteriorated, a total replacement may be necessary, Griffith said. One such example is the "Sawtooth." This section of McPherson Chemical Laboratory has deteriorated to a point where the educational lifetime of the structure has expired.

"Of course, we generally would prefer to renovate, to give a building a new lifetime by renewing its vital systems," Griffith said, comparing the process to the decisions faced by the average car owner when the vehicle reaches a cost-beneficial point of either being repaired or being replaced.

A general rule of thumb says that if a building can be renovated for less than half of what a comparable new structure would cost, and if the other factors of space, need, and location are favorable, then renovate the structure. But if the skeleton of the structure is weak, or if its transformation to modern-day educational methods is impossible, replacement may be necessary. The decision to replace University Hall is a good example. All that remains from its predecessor is the front archway.

While more than half of the University's buildings have been erected during the past two decades, numerous older structures still require attention. Griffith points out, including Mendenhall Laboratory, Brown Hall, Hamilton Hall, older

Townshend Hall is the original agricultural building on campus, completed in 1898 and named for OSU's first professor of agriculture, Norton S. Townshend. Today most facilities for agriculture have been relocated west of the Olentangy River.
Top: Known for its unique architectural style and its massive arch, Hayes Hall underwent complete renovation during 1978 to preserve this registered national landmark. The structure is named for Rutherford B. Hayes, 19th president of the United States, and a University Trustee from 1887 until his death in 1893, the year Hayes Hall was completed.

Above right: The entrance to the Main Library, named for President William Oxley Thompson, is rarely noticed for its decoration. Completed in 1913, the library has since undergone expansion and renovation.

Above: All that remains of the first University Hall is the stone arch that greeted OSU's first students in 1873. After the original structure was torn down, the original archway was used in building the new University Hall, completed in 1976.

Right: Completed in 1923, Mack Hall is one of the oldest women's residence halls on campus. It is named in memory of John T. Mack, a University Trustee.
Brown Hall's entrance is rarely recognized for its simple, classical beauty. Named in honor of Christopher N. Brown, the structure was built in 1903. Brown was dean of the College of Engineering. Today Brown Hall houses the School of Architecture. To enhance detail, the photograph has been posterized.
The OHIO STATE UNIVERSITY MONTHLY
February, 1930

Engineering

By William D. Turnbull, '08,
Junior Dean, and
Merrill Weed, '21,
Engineering Experiment Station

There are two ways to attract attention, as two letters that we have received indicate. One way is to ring the bell, the other to miss the target. For both letters we are grateful, for we know now that somebody reads the stuff we turn out monthly in response to the editor's prodding.

The praise first. After receiving this note from Billy Graves we are sure that our derbies, new last year, are entirely too small:

I have just been reading several of the more interesting and valuable articles in the last Monthly, like my convocation address and your report of the activities of the College of Engineering. I am here to say that I read every sentence of this latter effusion, despite the fact that I don't know many of the people referred to. Thank heaven for something that has some humor and humanity in it when it comes to such material. I hereby allow you a mark of "A plus" on this piece of composition—it's really delightful.

Sincerely yours,
Billy Graves

And now the criticism, constructive, and from a friend whose opinion we esteem very highly. It's about our mention of the ornamentation on the front of the new Chemistry Building, and is dated May 31 last year.

This is what Professor Bradford wrote:

In the Monthly an article appeared under the joint authorship of Turnbull and Weed, stating that the symbols over the doorways of the new Chemistry Building were signs of the zodiac. There are ancient alchemical symbols and not signs of the zodiac, and it seems strange to me that men educated as civil engineers were not better acquainted with the zodiac signs.

They are used in a traditional decorative motif which is perfectly permissible in architectural ornamentation.

Sincerely yours,
Joseph M. Harrap,
University Architect

This is what we wrote last spring about the new Chemistry temple:

"Four stories in height, with interesting zodiacal symbols on the lintels of the three front doors, the building has a dignity befitting the all-inclusive subject taught there."

When we put the period at the end of the sentence we thought we had penned something grandiose and worthy of the building. But, alas, pride goeth before a fall. It's been some time since we consulted an almanac and we just naturally got pieces, gemini, and all the other zodiacal signs mixed up with the mirror of Venus, the arm of Jupiter, the caduceus of Mercury and the other symbols used to denote members of the solar system. And, in a way, we're glad we made that faux pas for if we hadn't we might have never investigated the connection between the planetary symbols and the carvings on the doorway of our largest and most expensive college building.

Above is a picture of the lintel with the symbols carved in stone.

In the days of the ancient alchemists the heavenly bodies were supposed to have much more influence than we now attribute to them over the affairs of people and things on this whirling globe. Lead, the base metal that some long-bearded philosopher was always going to turn into gold, was under the special guardianship of Saturn, the ringed planet, so the symbol for Saturn came to represent lead. The other elements had their own stars and symbols. When alchemy was succeeded by modern chemistry these signs were taken over for the historical representation of the elements, so here we have them on the doorway, rich in their association and appropriate for the architectural representation of the purposes for which this building was designed.

We hope the time will come when more symbolic ornamentation will be used on our buildings.

From left to right in the picture the symbols and their elements are: the sun, gold; the mirror of Venus, copper; the arm of Jupiter, tin; the scythe of Saturn, lead; the crescent of the moon, silver; the caduceus of Mercury, mercury; the shield of Mars, iron. The sun is repeated at the other end giving unity to the design.