Stalking a Killer:
Respiratory Syncytial Virus

Mark E. Peeples, Ph.D.

Center for Vaccines & Immunity
The Research Institute at Nationwide Children’s Hospital
Mark.Peeples@nationwidechildrens.org

Professor
Department of Pediatrics
OSU College of Medicine
Center for Microbial Interface Biology
Public Health Preparedness for Infectious Diseases
Goals for Today

• Describe the ‘life’ of a virus
• Discuss RSV and the disease it causes
• Explore
 – Attempts at treatments and prophylaxis
 – Why we don’t have a vaccine to protect us
 – What we are doing to
 • Understand RSV better
 • Solve the RSV problem
• What the heck does ‘syncytial’ mean?
What is a virus?

• Very small
• Has no life of its own
 – A freeloader, a parasite
• Gets inside one of your cells and takes over
• Produces 100’s of identical viruses
 – These viruses infect more of your cells, and so on
 • Until your immune system stops it
 – Or they are spewed onto your friends (or whomever)
My “measles birthday” 1958
How is RSVV spread?
RSV infects the upper respiratory tract 1st
- If the immune system stops infection: common cold (most of us)
- If it moves to the lower respiratory tract, RSV can cause disease
 - Infants (no immunity)
 - Elderly (losing immunity)
RSV as a Public Health Problem

- RSV is the #1 cause for hospitalization at children’s hospitals
- Only present November-March
- Worse for premies

RSV is second only to influenza virus as cause of “excess deaths” of the elderly
RSV Prevention/Treatment

• No vaccine
 – Attempt in the 1960’s was disastrous
 • Killed vaccine
 – Since then, focus on live, attenuated virus vaccine
 • Goal: prevent lower respiratory tract infection

• No effective antiviral agents

• Prophylaxis for premature infants
 – Synagis (MedImmune/AZ): monoclonal antibody
 • Expensive
 – But less than treatment in the PICU
Respiratory Syncytial Virus

- Single strand RNA virus
 - Negative sense
- Paramyxoviridae family
 - Pneumovirinae subfamily
- 10 genes encoding 11 proteins

GFP Gene
GS
GE
Suppress the immune system

Leader
Trailer

3' 5'
RSV virion

- **N protein**
- **P protein**
- **L protein**
- **M2-1 protein**

Glycoproteins:
- **SH**
- **G** (attachment)
- **F** (fusion)

Virion’s goal: Deliver the virus genome to the next cell
Initiation of RSV Infection

- Its G protein binds to a “receptor” on the cell surface
 - Only cells expressing the receptor are susceptible to RSV infection
- Its F protein causes the virion membrane to fuse with the target cell membrane
 - Result: the guts of the virus are spilled into the cytoplasm of the target cell
- The virus begins to replicate
Respiratory Syncytial Virus Life Cycle
RSV infection of immortalized (HeLa) cells

(We have built the GFP gene into RSV)
What is the natural target cell for RSV?

• NOT HeLa cells (from a cervical tumor)
 • (But they are easy to study)

• Human airway epithelial cells
 • Not so easy to study
 • Essential for understanding RSV
Respiratory Tract

Upper

- Turbinate "baffles"
- Tonsillar lymphoid tissues
- Cervical lymph node
- Esophagus
- Trachea
- Bronchi
- Bronchioles
- Bronchial lymph node
- Alveolar macrophage
- Alveolus
Primary Well Differentiated Human Airway Epithelial (HAE) Cultures

A

cilia

columnar cells

B

basal cells

support

Zhang, et al, 2002
Zhang, et al, 2002
RSV Infects the Apical Ciliated Cells

Zhang et al., 2002
Zhang, et al, 2002
Does the Cell Source of RSV Matter?

[Graph showing number of infected cells for different cell sources and virus preparations]
Things We’ve Learned that May Improve the Attenuated Vaccine

• Problem: can’t grow enough attenuated RSV vaccine to make it economically feasible
 – Must grow in a WHO-approved cell line (Vero)

• We have found that:
 – This vaccine is 1,000 times less infectious for HAE cells than the same virus produced in HAE cells
 • The RSV G protein is destroyed in Vero cells
 • The RSV G protein is not modified properly in any cell line

• If we can fix both of these problems, we should be able to boost vaccine production 1,000 times, easily making it economically feasible
Adult Vaccine: RSV F Protein

- A live attenuated virus vaccine might cause disease if
 - A weakened immune system
- A protein vaccine would not have that problem
 - Would ‘remind’ the adult immune system
- It probably would not be used in infants
 - Fear: infants might react as they did to the killed virus vaccine
- Previous attempts to immunize adults with F protein
 - Not toxic
 - But, not very potent
- Since that time we have learned...
RSV F protein has two forms
Movie Time!
We have been able to produce a soluble version of the F protein in its pretriggered form.

- What causes it to trigger?

Pretriggered

Posttriggered

Reduced salt concentration
Pretriggered Soluble F Protein

• Better vaccine for adults?
 – Induce better antibodies than previous F vaccines?
 – We are working to stabilize the pretriggered form
 • Supported by a pharmaceutical company

• I was recently appointed to a Board
 – Funded by the Bill and Melinda Gates Foundation
 – Produce a vaccine for financially restricted countries
 – Vaccinate pregnant women
 • Transfer of protective antibodies across the placenta
Pretriggered Soluble F Protein

• Use to test antiviral drugs
 – Do the drugs cause triggering?
 • Or do they prevent triggering?
• Use the F protein model to design better drugs
 – Crystallize the F protein, determine its exact structure
 – We are working with a different pharmaceutical company
Summary of a Killer Virus: RSV

• Virus ‘life’ begins at infection
 – After fusion of the viral membrane with the cellular membrane

• RSV causes disease in the youngest and oldest
 – Can’t stop movement of the virus to the lower respiratory tract
 • Major burdens on the health care system in US
 • Major cause of death in the developing world
 – Common cold in the rest of us
Summary of a Killer Virus: RSV

• Treatments/Prevention
 – Antibody treatment protects premies (expensive)
 – No vaccine yet
 • Killed vaccine trial was a disaster (1960’s)
 • Attenuated virus is being explored for infants
 – Can’t produce enough vaccine to be economically viable
 – Our lab has discovered 2 problems in the G protein
 » Solutions could increase vaccine production by 1,000-fold
 • F protein vaccine is being explored for the elderly
 – Our lab has produced the F protein in the pretriggered form
 – Does it induce better immunity than the posttriggered F?
 – No small molecule antiviral drug yet
 • We are using our pretriggered F protein and triggering conditions: Do drugs prevent or cause triggering?
• ‘Syncytia’ are giant cells, fused by the RSV F protein
Acknowledgements

Peeples Lab at Nationwide Children’s
– Supranee (Koi) Chaiwatponsakorn
– Heather Costello
– Sara Johnson
– Sara Mertz
– Zack Risch
– Olga Malykhina
– Steve Kwilas
– Anna Kwilas
– Louay Hallak
– Mark Yednak
– John Manaloor
– Barb Newton
– Arife Unal
– Lenora Yambao

Funding
– NIH P01 HL051818
– NIH R01 AI047213
– Apath, LLC
– MedImmune, LLC
– Johnson & Johnson (Tibotec)
– Cystic Fibrosis Foundation Therapeutics
– Nationwide Children’s Hospital

Collaborators
– Peter Collins, NIH
– Ray Pickles, UNC
 • Liqun Zhang, Rachel Leisman
– Will Ray, TRINCH
– Richard Epand, McMaster
– Ed Walsh, U Rochester
– Paul Olivo, Apath; Diagnostic Hybrids
– Octavio Ramilo, TRINCH
– Asun Mejias, TRINCH
– Emilio Flano, TRINCH
F protein mediated fusion

Pretriggered → Triggering → Prehairpin intermediate → Fold-Back → Posttriggered (6HB) → Membrane fusion → Infection/Syncytia
Model of RSV F Protein Trimer

Pre-triggered form

Top view